

DG900 Pro Series

Function/Arbitrary Waveform Generator _____

Performance Verification

Mar. 2024

Guaranty and Declaration

Copyright

© 2024 RIGOL TECHNOLOGIES CO., LTD. All Rights Reserved.

Trademark Information

RIGOL® is the trademark of RIGOL TECHNOLOGIES CO., LTD.

Notices

RIGOL products are covered by P.R.C. and foreign patents, issued and pending.

RIGOL reserves the right to modify or change parts of or all the specifications and pricing

policies at the company's sole decision.

Information in this publication replaces all previously released materials.

Information in this publication is subject to change without notice.

RIGOL shall not be liable for either incidental or consequential losses in connection with the

furnishing, use, or performance of this manual, as well as any information contained.

Any part of this document is forbidden to be copied, photocopied, or rearranged without prior

written approval of RIGOL.

Product Certification

RIGOL guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2015 standard and the ISO14001:2015 standard. Other international standard

conformance certifications are in progress.

Contact Us

If you have any problem or requirement when using our products or this manual, please contact

RIGOL.

E-mail: service@rigol.com

Website: http://www.rigol.com

Se	ctior	n Description	Page
1	Safe	ety Requirement	1
•		General Safety Summary	
		Safety Notices and Symbols	
2		cument Overview	
3		erview	
		Test Preparations	
		Recommended Test Equipment	
		Test Considerations	
	3.4	Test Result Record	6
	3.5	Specifications	6
4	Perf	formance Verification Test	7
	4.1	Frequency Accuracy Test	7
		4.1.1 Specification	7
		4.1.2 Test Procedures	7
		4.1.3 Test Record Form	8
	4.2	AC Amplitude Accuracy Test	8
		4.2.1 Specification	8
		4.2.2 Test Procedures	9
		4.2.3 Test Record Form	10
	4.3	DC Offset Accuracy Test	11
		4.3.1 Specification	11
		4.3.2 Test Procedures	12
		4.3.3 Test Record Form	13
	4.4	AC Flatness Test	14
		4.4.1 Specification	14
		4.4.2 Test Procedures	14
		4.4.3 Test Record Form	16
	4.5	Harmonic Distortion Test	17
		4.5.1 Specification	17
		4.5.2 Test Procedures	17
		4.5.3 Test Record Form	19
	4.6	Spurious Signal Test	20
		4.6.1 Specification	21

	4.6.2 Test Procedures	21
	4.6.3 Test Record Form	22
4.7	Rise/Fall Time Test	23
	4.7.1 Specification	23
	4.7.2 Test Procedures	23
	4.7.3 Test Record Form	24
4.8	Overshoot Test	25
	4.8.1 Specification	25
	4.8.2 Test Procedures	25
	4.8.3 Test Record Form	26
App	pendix: Test Record Form	.27
	4.8	4.6.3 Test Record Form 4.7 Rise/Fall Time Test 4.7.1 Specification 4.7.2 Test Procedures 4.7.3 Test Record Form 4.8 Overshoot Test 4.8.1 Specification 4.8.2 Test Procedures

1 Safety Requirement

1.1 General Safety Summary

Please review the following safety precautions carefully before putting the instrument into operation so as to avoid any personal injury or damage to the instrument and any product connected to it. To prevent potential hazards, please follow the instructions specified in this manual to use the instrument properly.

Use the BNC Output Connectors Properly.

The front-panel and BNC output connectors only allow signal output but unable to support signal input.

Use Proper Power Cord.

Only the exclusive power cord designed for the instrument and authorized for use within the destination country could be used.

Observe All Terminal Ratings.

To avoid fire or shock hazard, observe all ratings and markers on the instrument and check your manual for more information about ratings before connecting the instrument.

Use Proper Overvoltage Protection.

Ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the operator might be exposed to the danger of an electric shock.

Do Not Operate Without Covers.

Do not operate the instrument with covers or panels removed.

Do Not Insert Objects into the Air Outlet.

Do not insert objects into the air outlet, as doing so may cause damage to the instrument.

Avoid Circuit or Wire Exposure.

Do not touch exposed junctions and components when the instrument is powered on.

Do Not Operate With Suspected Failures.

If you suspect that any damage may occur to the instrument, have it inspected by RIGOL authorized personnel before further operations. Any maintenance, adjustment or replacement especially to circuits or accessories must be performed by RIGOL authorized personnel.

Provide Adequate Ventilation.

Inadequate ventilation may cause an increase of temperature in the instrument, which would cause damage to the instrument. So please keep the instrument well ventilated and inspect the air outlet and the fan regularly.

Do Not Operate in Wet Conditions.

To avoid short circuit inside the instrument or electric shock, never operate the instrument in a humid environment.

Do Not Operate in an Explosive Atmosphere.

To avoid personal injuries or damage to the instrument, never operate the instrument in an explosive atmosphere.

Keep Instrument Surfaces Clean and Dry.

To avoid dust or moisture from affecting the performance of the instrument, keep the surfaces of the instrument clean and dry.

• Prevent Electrostatic Impact.

Operate the instrument in an electrostatic discharge protective environment to avoid damage induced by static discharges. Always ground both the internal and external conductors of cables to release static before making connections.

Use the Battery Properly.

Do not expose the battery (if available) to high temperature or fire. Keep it out of the reach of children. Improper change of a battery (lithium battery) may cause an explosion. Use the RIGOL specified battery only.

Handle with Caution.

Please handle with care during transportation to avoid damage to keys, knobs, interfaces, and other parts on the panels.

WARNING

Equipment meeting Class A requirements may not offer adequate protection to broadcast services within residential environment.

1.2 Safety Notices and Symbols

Safety Notices in this Manual:

WARNING

Indicates a potentially hazardous situation or practice which, if not avoided, will result in serious injury or death.

CAUTION

Indicates a potentially hazardous situation or practice which, if not avoided, could result in damage to the product or loss of important data.

Safety Notices on the Product:

DANGER

It calls attention to an operation, if not correctly performed, could result in injury or hazard immediately.

WARNING

It calls attention to an operation, if not correctly performed, could result in potential injury or hazard.

CAUTION

It calls attention to an operation, if not correctly performed, could result in damage to the product or other devices connected to the product.

Safety Symbols on the Product:

Test Ground

Hazardous Voltage

Safety Warning Protective Earth Chassis Ground
Terminal

2 Document Overview

This manual is designed to guide you to properly test the performance specifications of RIGOL DG900 Pro Series Function/Arbitrary Waveform Generator. For the operation methods mentioned in the test procedures, refer to User Guide of this product.

Publication Number

PVB15100-1110

Format Conventions in this Manual

1. Key

The front panel key is denoted by the menu key icon. For example, indicates the "Default" key.

2. Menu

The menu item is denoted by the format of "Menu Name (Bold) + Character Shading" in the manual. For example, **Setup** indicates the "Setup" sub-menu under the "Utility" function menu.

3. Operation Procedures

The next step of the operation is denoted by ">" in the manual. For example,

Content Conventions in this Manual

DG900 Pro Series Function/Arbitrary Waveform Generator includes the following models. Unless otherwise specified, this manual takes DG922 Pro as an example to illustrate the methods for the performance verification test of DG900 Pro series.

Model	No. of Channels	Sample Rate	Max. Output Frequency
DG902 Pro	2	1.25 GSa/s	70 MHz
DG912 Pro	2	1.25 GSa/s	150 MHz
DG922 Pro	2	1.25 GSa/s	200 MHz

3 Overview

3.1 Test Preparations

Before the test, please make sure that the instrument is within the calibration period (1 year recommended) and has been operating for at least 20 minutes at a specified operating temperature $(23^{\circ}\text{C}\pm5^{\circ}\text{C})$.

3.2 Recommended Test Equipment

Use the test equipment listed in the following table to verify the performance of DG900 Pro. If the exact instrument model is not available, it is recommended to select the substitute equipment that can meet the following "Specification".

Table 3.1 Recommended Test Equipment

Equipment	Specification	Recommended Model
Frequency Counter	>10 MHz	Agilent 53131A
Frequency Counter	Accuracy: 0.1 ppm	Agliefit 33131A
Digital Multimeter	6½ digits	RIGOL DM3068
	-30 dBm to +20 dBm	
Power Meter	Accuracy: ±0.02 dB	Agilent E4416A
	Resolution: 0.01 dB	
Spectrum Analyzer	Min. resolution bandwidth: 10 Hz	RIGOL DSA875
	Bandwidth: ≥500 MHz	
Oscilloscope	Rise/Fall time measurement function	RIGOL DHO4804
	Overshoot measurement function	
Cable	BNC (m)-BNC (m)	-
Cable	BNC (m)-Dual Banana Plug (m)	-
50 Ω Load	50 Ω/1 W	-
Power Sensor	-35 dBm to +20 dBm	Agilent N8482A

Equipment	Specification	Recommended Model
Power Sensor Cable	Used to connect the power meter and power sensor	-
Adaptor	N (f)-BNC (m)	-
Adaptor	BNC (f)-N (m)	-

3.3 Test Considerations

For better performance, all procedures should comply with the following recommendations:

- **1.** Before making the performance verification test, please make sure that the instrument has been operating for at least 20 minutes at a specified operating temperature (23°C±5°C).
- **2.** Each test should be performed at the specified operating temperature $(23^{\circ}C \pm 5^{\circ}C)$.
- **3.** Please reset the instrument to the factory setting before or after executing any of the tests.

3.4 Test Result Record

Record and keep the test result of each test. In the final chapter of this manual, a test result record form is provided. The form lists all the test items and their corresponding performance limits as well as spaces for users to record the test results.

TIP

It is recommended that users photocopy the test record form before each test and record the test results in the copy so that the form can be used repeatedly.

3.5 Specifications

The specification of each test item is provided in this manual. For other technical parameters, refer to *DG900 Pro Data Sheet* (download it from RIGOL website: www.rigol.com).

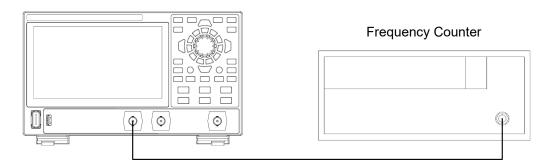
TIP

All the specifications are valid only when the instrument has been operating for more than 20 minutes within the specified operating temperature range (23°C±5°C).

4 Performance Verification Test

This chapter takes the CH1 of DG922 Pro as an example to illustrate the performance verification test methods of DG900 Pro series. The testing methods are also applicable to CH2.

4.1 Frequency Accuracy Test


4.1.1 Specification

Frequency Accuracy					
Specification	$\pm 10^{-6}$ of the setting value (except Arb and Sequence), 0°C to 40°C				
Specification	$\pm 10^{-6}$ of the setting value $\pm 1~\mu$ Hz (Arb and Sequence), 0°C to 40°C				

4.1.2 Test Procedures

1. As shown in the figure below, use the dual BNC cable to connect the output terminal of DG900 Pro to the signal input terminal of the frequency counter. This case takes CH1 as an example. The test method also applies to CH2.

DG900 Pro

- **2.** Set the input impedance of the frequency counter to 1 M Ω .
- **3.** Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 4. Set up the DG900 Pro series:
 - a. Set CH1 to output a Sine wave with 1 MHz frequency and 1 Vpp amplitude.
 - **b.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.

- **5.** Record the current reading on the frequency counter and verify that the reading is between 0.999999 MHz and 1.000001 MHz.
- **6.** Set DG900 Pro to output Square, Ramp, Pulse, and Harmonics respectively (1 MHz frequency, 1 Vpp amplitude). Record the reading on the counter respectively and verify that the reading is within 0.999999 MHz and 1.000001 MHz.
- **7.** Repeat the steps above to test the frequency accuracy for CH2 and record the test results.

4.1.3 Test Record Form

Channel: CH1

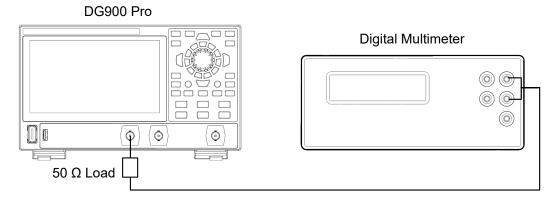
Waveform	Setting	Measured Value	Limit ^[1]	Pass/	'Fail
Sine			0.999999 MHz to 1.000001 MHz		
Square	Frequency:		0.999999 MHz to 1.000001 MHz		
Ramp	1 MHz Amplitude: 1 Vpp		0.999999 MHz to 1.000001 MHz		
Pulse			0.999999 MHz to 1.000001 MHz		
Harmonic			0.999999 MHz to 1.000001 MHz		

Channel: CH2

Waveform	Setting	Measured Value	Limit ^[1]	Pass/	Pass/Fail	
Sine			0.999999 MHz to 1.000001 MHz			
Square	Frequency:		0.999999 MHz to 1.000001 MHz			
Ramp	1 MHz Amplitude:		0.999999 MHz to 1.000001 MHz			
Pulse	1 Vpp		0.999999 MHz to 1.000001 MHz			
Harmonic			0.999999 MHz to 1.000001 MHz			

Note^[1]: ±10⁻⁶ of the setting value (except Arb and Sequence), 0°C to 40°C

4.2 AC Amplitude Accuracy Test


4.2.1 Specification

AC Amplitude Accuracy ^[1]					
Specification	\pm (1% of the setting value + 2 mVpp)(into 50 Ω)				
	±(1% of the setting value + 5 mVpp)(into HighZ)				

Note^[1]: 1 kHz Sine, amplitude > 1 mVpp, 0 V offset, unit: Vpp.

4.2.2 Test Procedures

1. Connect the 50 Ω load to the output terminal of DG900 Pro. This case takes CH1 as example. The test method also applies to CH2. Then use the BNC-dual banana plug cable to connect the 50 Ω load and the voltage input terminal of the digital multimeter.

- **2.** Select the AC voltage (ACV) measurement function for the multimeter and set the range to "2 V".
- **3.** Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 4. Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set CH1 to output a Sine wave with 1 kHz frequency, 0 Vdc offset, and 20 mVpp amplitude.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **5.** Record the reading on the multimeter and verify that the reading is within the range specified in the "Limits of Amplitude Output Value (Vrms)".
- 6. Keep other settings unchanged for DG900 Pro and adjust the output waveform amplitude of CH1 to 100 mVpp, 500 mVpp, 1 Vpp, 5 Vpp, and 10 Vpp respectively. When the amplitude of the output waveform is set to 100 mVpp or 500 mVpp, keep the 2 V range for the multimeter; when the amplitude of the output waveform is set to 1 Vpp, 5 Vpp, or 10 Vpp, set the range to 20 V. Record the

reading on the multimeter and verify that the reading is within the range specified in the "Limits of Amplitude Output Value (Vrms)".

Amplitude Setting (Vpp)	Permissible Error ^[1] (Vpp)	Limits of Amplitude Output Value (Vpp)	Limits of Amplitude Output Value (Vrms) ^[2]
20 mVpp	±2.2 mV	17.8 mVpp to 22.2 mVpp	6.3 mVrms to 7.8 mVrms
100 mVpp	±3 mV	97 mVpp to 103 mVpp	34.3 mVrms to 36.4 mVrms
500 mVpp	±7 mV	493 mVpp to 507 mVpp	174.3 mVrms to 179.3 mVrms
1 Vpp	±12 mV	0.988 Vpp to 1.012 Vpp	349.3 mVrms to 357.8 mVrms
5 Vpp	±52 mV	4.948 Vpp to 5.052 Vpp	1.7494 Vrms to 1.7862 Vrms
10 Vpp	±102 mV	9.898 Vpp to 10.102 Vpp	3.4995 Vrms to 3.5716 Vrms

Note^[1]: "Permissible Error" is calculated from the specification " \pm (1% of the setting value + 2 mVpp)".

Note^[2]: "Limits of Amplitude Output Value (Vrms)" is calculated from "Limits of Amplitude Output Value (Vpp)". The conversion relationship between Vrms and Vpp: $Vpp = 2\sqrt{2} \ Vrms$.

7. Repeat the steps above to test the AC amplitude accuracy for CH2 and record the test results.

4.2.3 Test Record Form

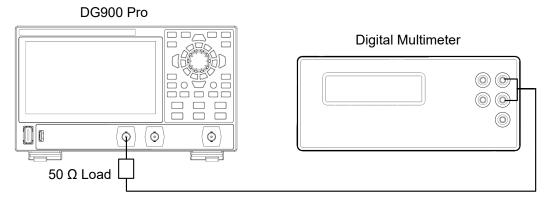
Amplitude Setting	mplitude etting Setting		Limit ^[1]	Pass/	Fail
20 mVpp	Frequency: 1 kHz		6.3 mVrms to 7.8 mVrms		
100 mVpp	Offset: 0 Vdc		34.3 mVrms to 36.4 mVrms		
500 mVpp	Impedance: 50 Ω		174.3 mVrms to 179.3 mVrms		

Amplitude Setting	Setting	Measured Value	Limit ^[1]	Pass/	'Fail
1 Vpp			349.3 mVrms to 357.8 mVrms		
5 Vpp			1.7494 mVrms to 1.7862 mVrms		
10 Vpp			3.4995 mVrms to 3.5716 mVrms		

Channel: CH2

Amplitude Setting	Setting	Measured Value	Limit ^[1]	Pass/	Fail
20 mVpp			6.3 mVrms to 7.8 mVrms		
100 mVpp			34.3 mVrms to 36.4 mVrms		
500 mVpp	Frequency: 1 kHz		174.3 mVrms to 179.3 mVrms		
1 Vpp	Offset: 0 Vdc		349.3 mVrms to 357.8 mVrms		
5 Vpp	- 50 Ω		1.7494 mVrms to 1.7862 mVrms		
10 Vpp			3.4995 mVrms to 3.5716 mVrms		

Note^[1]: 1 kHz Sine, amplitude > 1 mVpp, 0 V offset, unit: Vpp. \pm (1% of the setting value + 2 mVpp).


4.3 DC Offset Accuracy Test

4.3.1 Specification

DC Offset Accuracy			
Specification	\pm (1% of setting value + 2 mVdc + 0.5% of amplitude (Vpp)) (into 50 Ω)		
Specification	\pm (1% of setting value + 5 mVdc + 1% of amplitude (Vpp)) (into HighZ)		

4.3.2 Test Procedures

1. Connect the 50 Ω load to the output terminal of DG900 Pro. This case takes CH1 as example. The test method also applies to CH2. Then use the BNC-dual banana plug cable to connect the 50 Ω load and the voltage input terminal of the digital multimeter.

- **2.** Select the DC voltage (DCV) measurement function for the multimeter and set the range to 20 V.
- **3.** Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 4. Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set CH1 to output a Sine wave with 1 kHz frequency, 5 Vpp amplitude, and 0 Vdc offset.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **5.** Record the reading on the multimeter and verify that the reading is within the range specified in the "Offset Limit" of the table below.
- **6.** Keep the other settings unchanged and adjust the output waveform offset of CH1 to -2.5 Vdc, -1 Vdc, -500 mVdc, 500 mVdc, 1 Vdc, and 2.5 Vdc respectively. Record the reading on the multimeter and verify that the reading is within the "Offset Limit" specified in the table below.

Offset Setting	Amplitude Setting	Permissible Error ^[1]	Offset Limit
-2.5 Vdc		±0.052 Vdc	-2.552 Vdc to -2.448 Vdc
-1 Vdc	5 Vpp	±0.037 Vdc	-1.037 Vdc to -0.963 Vdc
-500 mVdc		±0.032 Vdc	-0.532 Vdc to -0.468 Vdc

Offset Setting	Amplitude Setting	Permissible Error ^[1]	Offset Limit
0 Vdc		±0.027 Vdc	-0.027 Vdc to +0.027 Vdc
+500 mVdc		±0.032 Vdc	0.468 Vdc to 0.532 Vdc
+1 Vdc		±0.037 Vdc	0.963 Vdc to 1.037 Vdc
+2.5 Vdc		±0.052 Vdc	2.448 Vdc to 2.552 Vdc

Note^[1]: "Permissible Error" is calculated from the specification " \pm (1% of |the setting value| + 2 mV + 0.5% of the amplitude (Vpp))".

7. Repeat the steps above to verify the DC offset accuracy for CH2 and record the test result.

4.3.3 Test Record Form

Channel: CH1

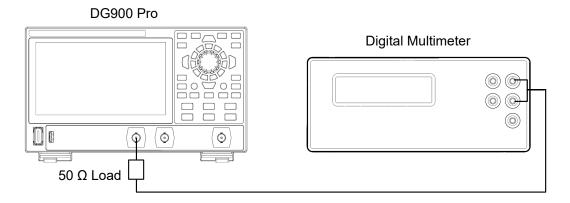
Offset Setting	Setting	Measured Value	Limit ^[1]	Pass/Fail
-2.5 Vdc			-2.552 Vdc to -2.448 Vdc	
-1 Vdc	Frequency: 1		-1.037 Vdc to -0.963 Vdc	
-500 mVdc	kHz		-0.532 Vdc to -0.468 Vdc	
0 Vdc	Amplitude: 5 Vpp		-0.027 Vdc to +0.027 Vdc	
500 mVdc	Impedance:		0.468 Vdc to 0.532 Vdc	
1 Vdc	50 Ω		0.963 Vdc to 1.037 Vdc	
2.5 Vdc			2.448 Vdc to 2.552 Vdc	

Offset Setting	Setting	Measured Value	Limit ^[1]	Pass/Fail
-2.5 Vdc	Frequency: 1		-2.552 Vdc to -2.448 Vdc	
-1 Vdc	kHz Amplitude: 5		-1.037 Vdc to -0.963 Vdc	
-500 mVdc	Vpp		-0.532 Vdc to -0.468 Vdc	
0 Vdc	Impedance: 50 Ω		-0.027 Vdc to +0.027 Vdc	

Offset Setting	Setting	Measured Value	Limit ^[1]	Pass/F	ail
500 mVdc			0.468 Vdc to 0.532 Vdc		
1 Vdc			0.963 Vdc to 1.037 Vdc		
2.5 Vdc			2.448 Vdc to 2.552 Vdc		

Note^[1]: the offset limit value is calculated from the offset setting value \pm permissible error. The permissible error is calculated from the specification " \pm (1% of |the setting value| + 2 mVdc + 0.5% of the amplitude (Vpp))".

4.4 AC Flatness Test

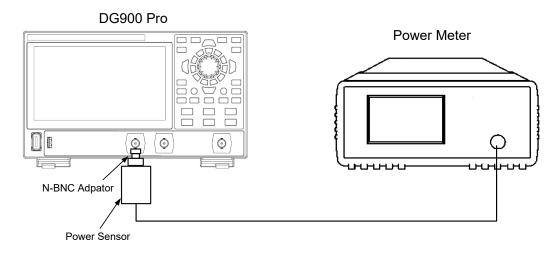

4.4.1 Specification

AC Flatness	
	Typical (relative to 1 kHz Sine, 0 dBm)
	<10 MHz: ±0.1 dB
Flatness	≥10 MHz to <50 MHz: ±0.2 dB
	≥50 MHz to <100 MHz: ±0.5 dB
	≥100 MHz: ±1.0 dB

4.4.2 Test Procedures

Test Procedures

1. Connect the 50 Ω load to the output terminal of DG900 Pro. This case takes CH1 as example. The test method also applies to CH2. Then use the BNC-dual banana plug cable to connect the 50 Ω load and the voltage input terminal of the digital multimeter.


- 2. Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 3. Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set CH1 to output a Sine wave with 1 kHz frequency and 0 dBm amplitude.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **4.** Select the AC voltage measurement function for the multimeter and enable the dBm operation. Set the reference resistance to 50 Ω and read the measured value as the reference power value (P_{ref}).

TIP

In this step, if the dBm operation is not enabled, you can also use the measured value ($V_{Reading}$) on the multimeter and the formula "dBm = $10 \times lg[(V_{Reading}^2/R_{ref})/1 \text{ mW}]$ " to calculate the reference power value; wherein, R_{ref} is the load impedance.

- **5.** Calibrate the power meter:
 - **a.** Connect the power sensor to the input terminal and the **[POWER REF]** terminal of the power meter respectively.
 - **b.** Open the Zero/Cal menu and then click or tap **Zero+Cal** to perform the calibration. After the calibration is complete, observe whether the measured value of the power meter is 0 dBm, 50 MHz.
- **6.** Disconnect DG900 Pro and the multimeter. Use the N-BNC adaptor to connect the power sensor to the output terminal of DG900 Pro. This case takes CH1 as an example. The test method also applies to CH2. Use the power meter cable to connect the power sensor output terminal to the power meter input terminal, as shown in the figure below.

- **7.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 1 MHz. Set the frequency factor to 1 MHz for the power meter. Record the measured value and verify that the "Measured Value-P_{ref}" is between -0.1 dB and +0.1 dB.
- **8.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 10 MHz. Set the frequency factor to 10 MHz for the power meter. Record the measured value and verify that the "Measured Value-P_{ref}" is between -0.2 dB and +0.2 dB.
- **9.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 50 MHz (). Set the frequency factor to 50 MHz for the power meter. Record the measured value and verify that the "Measured Value- P_{ref} " is between -0.5 dB and +0.5 dB.
- 10. Keep other settings unchanged for DG900 Pro and adjust the output frequency to 100 MHz (for DG912 Pro and DG922 Pro only). Set the frequency factor to 100 MHz for the power meter. Record the measured value and verify that the "Measured Value- P_{ref} " is between -1.0 dB and +1.0 dB.
- 11. Keep other settings unchanged for DG900 Pro and adjust the output frequency to 200 MHz (DG922 Pro only). Set the frequency factor to 200 MHz for the power meter. Record the measured value and verify that the "Measured Value- P_{ref} " is between -1.0 dB and +1.0 dB.
- 12. Repeat the steps above to verify the AC flatness for CH2 and record the test result.

4.4.3 Test Record Form

Output Channel: CH1

P_{ref}= _____

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass	/Fail
1 MHz				±0.1 dB		
10 MHz	Amplitude: 0			±0.2 dB		
50 MHz	dBm Impedance: 50 Ω			±0.5 dB		
100 MHz ^[2]				±1 dB		
200 MHz ^[3]				±1 dB		

			_		
				CH ₂	١
t n	an	me		(H /	,

P_{ref}= _____

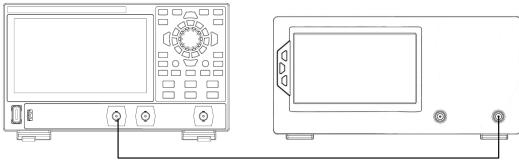
Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass	/Fail
1 MHz				±0.1 dB		
10 MHz	Amplitude: 0			±0.2 dB		
50 MHz	dBm Impedance: 50 Ω			±0.5 dB		
100 MHz ^[2]				±1 dB		
200 MHz ^[3]				±1 dB		

Note: Calculation Result = Amplitude Measured Value - P_{ref}.

Note^[2]: for DG912 Pro and DG922 Pro only.

Note^[3]: DG922 Pro only.

4.5 Harmonic Distortion Test


4.5.1 Specification

Sine Wave Spectral Purity		
	Typical (0 dBm)	
Harmonic	10 Hz to <10 MHz: <-55 dBc	
Distortion	≥10 MHz to <50 MHz: <-50 dBc	
	≥50 MHz: <-40 dBc	

4.5.2 Test Procedures

1. As shown in the figure below, use the dual BNC cable and the BNC-N adaptor to connect the output terminal of DG900 Pro to the RF input terminal of the spectrum analyzer. This case takes CH1 as an example. The test method also applies to CH2.

- **2.** Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 3. Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set CH1 to output a Sine wave with 1 MHz frequency, 0 dBm amplitude, and 0 Vdc offset.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **4.** Set up the spectrum analyzer:
 - a. Set the input attenuation to 20 dB and the reference level to 10 dBm.
 - **b.** Set the start frequency to 0 Hz and the stop frequency to 5 MHz.
 - c. Set the resolution bandwidth to 1 kHz.
- **5.** Enable the peak table^[1] function of the spectrum analyzer and record the measured values of the fundamental wave and the second harmonic. Verify that the harmonic distortion is less than -55 dBc through calculation^[2].
- **6.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 10 MHz.
- 7. Set up the spectrum analyzer:
 - a. Set the input attenuation to 20 dB and the reference level to 10 dBm.
 - **b.** Set the start frequency to 5 MHz and the stop frequency to 30 MHz.
 - c. Set the resolution bandwidth to 1 kHz.
- **8.** Record the measured values of the fundamental wave and the second harmonic in the peak table. Verify that the harmonic distortion is less than -50 dBc through calculation^[2].
- **9.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 50 MHz.
- **10.** Set up the spectrum analyzer:
 - a. Set the input attenuation to 20 dB and the reference level to 10 dBm.
 - **b.** Set the start frequency to 40 MHz and the stop frequency to 120 MHz.
 - **c.** Set the resolution bandwidth to 3 kHz.

- **11.** Record the measured values of the fundamental wave and the second harmonic. Verify that the harmonic distortion is less than -40 dBc through calculation^[2].
- **12.** Keep other settings unchanged for DG900 Pro and adjust the output frequency to 200 MHz (for DG922 Pro only).
- **13.** Set up the spectrum analyzer:
 - a. Set the input attenuation to 20 dB and the reference level to 10 dBm.
 - **b.** Set the start frequency to 150 MHz and the stop frequency to 500 MHz.
 - c. Set the resolution bandwidth to 3 kHz.
- **14.** Record the measured values of the fundamental wave and the second harmonic in the peak table. Verify that the harmonic distortion is less than -40 dBc through calculation^[2].
- **15.** Repeat the steps above to test the harmonic distortion for CH2 and record the test result.

NOTE

[1]: The Second Harmonic Distortion = Measured Value of the Second Harmonic - Measured Value of the Fundamental Wave; For example, if the measured value of the fundamental wave is -10 dBm and the measured value of the second harmonic is -72 dBm, the second harmonic distortion = (-72) - (-10) = -62 dBc.

4.5.3 Test Record Form

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/	Fail ^[2]
1 MHz		1 (Fundamental Wave):		<-55 dBc		
	Waveform:	2:				
10 MHz	Amplitude: 0 dBm Offset: 0	1 (Fundamental Wave):		<-50 dBc		
	Vdc	2:				
50 MHz		1 (Fundamental Wave):		<-40 dBc		

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/	Fail ^[2]
		2:				
200 MHz (for DG922 Pro only)		1 (Fundamental Wave): 2:		<-40 dBc		

Channel: CH2

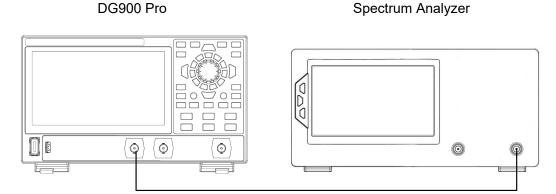
Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/l	Fail ^[2]
1 MHz		1 (Fundamental Wave): 2:		<-55 dBc		
10 MHz	Waveform: Sine	1 (Fundamental Wave):		<-50 dBc		
	Amplitude: 0	2:				
50 MHz	dBm Offset: 0 Vdc	1 (Fundamental Wave): 2:		<-40 dBc		
200 MHz (for DG922		1 (Fundamental Wave):		<-40 dBc		
Pro only)		2:				

Note [1]: Calculation Result = Measured Value for the n^{th} Harmonic—Measured Value for the Fundamental Wave

 $\mathsf{Note}^{[2]}$: If the calculation result is greater than the specification, the test fails.

4.6 Spurious Signal Test

4.6.1 Specification


Sine Wave Spurious Signal (nonharmonic)			
	Typical (1 Vpp)		
Specification	10 Hz to <10 MHz: <-65 dBc		
	≥10 MHz to <50 MHz: <-60 dBc		
	≥50 MHz: <-50 dBc + 6 dBc/octave ^[1]		

Note^[1]: 6 dBc/octave means that for every doubling of the frequency, the specification increases by 6 dBc. For example, when DG900 Pro outputs 50 MHz, the specification limit is -50 dBc; when it outputs 100 MHz, the limit is -50 dBc + 6 dBc.

4.6.2 Test Procedures

Test Procedures

1. As shown in the figure below, use the dual BNC cable and the BNC-N adaptor to connect the output terminal of DG900 Pro to the RF input terminal of the spectrum analyzer. This case takes CH1 as an example. The test method also applies to CH2.

- 2. Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 3. Set up the DG900 Pro series:
 - a. Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set CH1 to output a Sine wave with 1 MHz frequency, 1 Vpp amplitude, and 0 Vdc offset.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **4.** Set up the spectrum analyzer:

- a. Set the reference level to 10 dBm and the input attenuation to 20 dB.
- **b.** Set the start frequency to 0 Hz and the stop frequency to 10 MHz.
- c. Set the resolution bandwidth to 1 kHz.
- **d.** Set the peak shift to 3 dB.
- e. Set the sweep mode to Single.
- **f.** Press the front panel Peak key to find the maximum peak.
- **5.** Measure the maximum spurious signal (except the harmonics) using the cursor measurement and record the test result A. Calculate the nonharmonic spurious signal (A 4 dBm) and compare it with the specification.
- **6.** Keep the other settings unchanged and change the output frequency of DG900 Pro and the stop frequency of the spectrum analyzer according to the table below. Record the max. spurious signal for each output frequency and calculate the measurement result. Compare the result with the specification.

DG900 Pro Output Frequency	Spectrum Analyzer Stop Frequency
10 MHz	100 MHz
50 MHz	150 MHz
200 MHz (for DG922 Pro only)	500 MHz

7. Repeat the steps above to test the spurious signal for CH2 and record the test result.

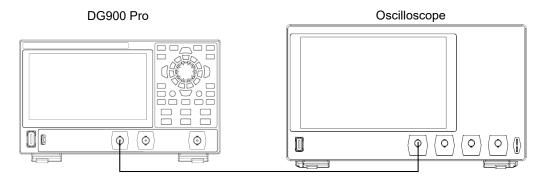
4.6.3 Test Record Form

Output Frequency	Start Frequency	Stop Frequency	A	A - 4 dB	Limit	Pass/	'Fail
1 MHz	0 Hz	10 MHz			<-65 dBc		
10 MHz	0 Hz	100 MHz			<-60 dBc		
50 MHz	0 Hz	150 MHz			<-50 dBc		
200 MHz (for DG922 Pro only)	0 Hz	500 MHz			<-32 dBc		

Channel: CH2

Output Frequency	Start Frequency	Stop Frequency	A	A - 4 dB	Limit	Pass,	/Fail
1 MHz	0 Hz	10 MHz			<-65 dBc		
10 MHz	0 Hz	100 MHz			<-60 dBc		
50 MHz	0 Hz	150 MHz			<-50 dBc		
200 MHz (for DG922 Pro only)	0 MHz	500 MHz			<-32 dBc		

4.7 Rise/Fall Time Test


4.7.1 Specification

Square Rise/Fall Time			
Specification	Typical (≤2 Vpp amplitude, 50 Ω load), ≤3 ns		

4.7.2 Test Procedures

Test Procedures

1. As shown in the figure below, use the dual BNC cable to connect the output terminal of DG900 Pro to the signal input terminal of the oscilloscope. This case takes CH1 as an example. The test method also applies to CH2.

- **2.** Press the front-panel key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- **3.** Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).

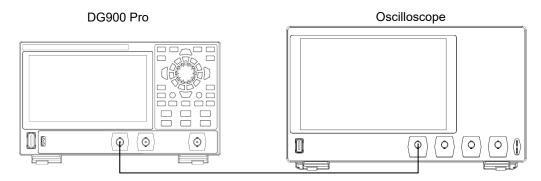
- **b.** Set the CH1 to output a Square wave with 1 MHz frequency, 0 dBm amplitude, and 0 Vdc offset.
- **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- 4. Set up the oscilloscope:
 - a. Set the vertical scale to 200 mV/div.
 - **b.** Set the horizontal timebase to 1 ns.
 - c. Adjust the trigger level.
 - **d.** Set the input impedance to 50 Ω .
 - e. Enable the rise time and fall time measurement functions.
- **5.** Set the edge type to rising edge for the oscilloscope. Record the measured value of the rise time and verify that the value is within the specified range.
- **6.** Set the edge type to falling edge for the oscilloscope. Record the measured value of the fall time and verify that the value is within the specified range.
- 7. Repeat the steps above to test the rise/fall time for CH2 and record the test result.

4.7.3 Test Record Form

Channel: CH1

Setting	Measured Value)	Limit	Pass/F	ail
Waveform: Square Frequency: 1 MHz	Rise Time		≤3 ns		
Amplitude: 0 dBm Offset: 0 Vdc	Fall Time		≤3 ns		

Setting	Measured Valu	е	Limit	Pass/F	ail
Waveform: Square Frequency: 1 MHz	Rise Time		≤3 ns		
Amplitude: 0 dBm Offset: 0 Vdc	Fall Time		≤3 ns		


4.8 Overshoot Test

4.8.1 Specification

Square Overshoot	
Specification	Typical (0 dBm amplitude, >1 kHz frequency), <5%

4.8.2 Test Procedures

1. As shown in the figure below, use the dual BNC cable to connect the output terminal of DG900 Pro to the signal input terminal of the oscilloscope. This case takes CH1 as an example. The test method also applies to CH2.

- **2.** Press the front-panel Default key of DG900 Pro and a prompt message is displayed. Click or tap **OK** to restore the instrument to its factory default settings.
- 3. Set up the DG900 Pro series:
 - **a.** Set the output impedance of CH1 to 50 Ω (in CH1 setup interface, click or tap the **Channel** tab and select "Load" in the drop-down menu of **Imped**).
 - **b.** Set the CH1 to output a Square wave with 1 MHz frequency, 0 dBm amplitude, and 0 Vdc offset.
 - **c.** Click or tap the front-panel CH1 On/Off key to enable the output of CH1. You can also click or tap the CH1 channel label at the bottom of the display.
- **4.** Set up the oscilloscope:
 - a. Set the vertical scale to 200 mV/div.
 - **b.** Set the horizontal timebase to 100 ns.
 - c. Adjust the trigger level.
 - **d.** Set the input impedance to 50 Ω .
 - e. Enable the overshoot measurement function.

- **5.** Record the measured value of the oscilloscope and verify that the value is within the specified range.
- **6.** Repeat the steps above to test the overshoot for CH2 and record the test result.

4.8.3 Test Record Form

Channel: CH1

Setting	Measured Value	Limit	Pass/Fail
Waveform: Square			
Frequency: 1 MHz		<5%	
Amplitude: 0 dBm		< 370	
Offset: 0 Vdc			

Setting	Measured Value	Limit	Pass/Fail
Waveform: Square			
Frequency: 1 MHz		,E0/	
Amplitude: 0 dBm		<5%	
Offset: 0 Vdc			

5 Appendix: Test Record Form

RIGOL DG900 Pro Series Function/Arbitrary Waveform Generator Performance Verification Test Record Form

Model:	Tested by:	Test Date:
Model	rested by.	rest Date.

Frequency Accuracy Test

Channel: CH1

Waveform	Setting	Measured Value	Limit ^[1]	Pass/	'Fail
Sine			0.999999 MHz to 1.000001 MHz		
Square	Frequency:		0.999999 MHz to 1.000001 MHz		
Ramp	1 MHz Amplitude:		0.999999 MHz to 1.000001 MHz		
Pulse	1 Vpp		0.999999 MHz to 1.000001 MHz		
Harmonic			0.999999 MHz to 1.000001 MHz		

Channel: CH2

Waveform	Setting	Measured Value	Limit ^[1]	Pass/	'Fail
Sine			0.999999 MHz to 1.000001 MHz		
Square	Frequency:		0.999999 MHz to 1.000001 MHz		
Ramp	1 MHz Amplitude: 1 Vpp		0.999999 MHz to 1.000001 MHz		
Pulse			0.999999 MHz to 1.000001 MHz		
Harmonic			0.999999 MHz to 1.000001 MHz		

Note^[1]: $\pm 10^{-6}$ of the setting value (except Arb and Sequence), 0°C to 40°C

AC Amplitude Accuracy Test

Channel: CH1

Amplitude Setting	Setting	Measured Value	Limit ^[1]	Pass/	Fail
20 mVpp			6.3 mVrms to 7.8 mVrms		
100 mVpp			34.3 mVrms to 36.4 mVrms		
500 mVpp	Frequency: 1 kHz		174.3 mVrms to 179.3 mVrms		
1 Vpp	Offset: 0 Vdc		349.3 mVrms to 357.8 mVrms		
5 Vpp	50 Ω		1.7494 mVrms to 1.7862 mVrms		
10 Vpp			3.4995 mVrms to 3.5716 mVrms		

Channel: CH2

Amplitude Setting	Setting	Measured Value	Limit ^[1]	Pass/	Fail
20 mVpp			6.3 mVrms to 7.8 mVrms		
100 mVpp			34.3 mVrms to 36.4 mVrms		
500 mVpp	Frequency: 1 kHz		174.3 mVrms to 179.3 mVrms		
1 Vpp	Offset: 0 Vdc		349.3 mVrms to 357.8 mVrms		
5 Vpp	50 Ω		1.7494 mVrms to 1.7862 mVrms		
10 Vpp			3.4995 mVrms to 3.5716 mVrms		

Note^[1]: 1 kHz Sine, amplitude > 1 mVpp, 0 Vdc offset, unit: Vpp. \pm (1% of the setting value + 2 mVpp).

DC Offset Accuracy Test

Channel: CH1

Offset Setting	Setting	Measured Value	Limit ^[1]	Pass/Fail
-2.5 Vdc			-2.552 Vdc to -2.448 Vdc	
-1 Vdc	Frequency: 1		-1.037 Vdc to -0.963 Vdc	
-500 mVdc	kHz		-0.532 Vdc to -0.468 Vdc	
0 Vdc	Amplitude: 5 Vpp		-0.027 Vdc to +0.027 Vdc	
+500 mVdc	Impedance:		0.468 Vdc to 0.532 Vdc	
+1 Vdc	50 Ω		0.963 Vdc to 1.037 Vdc	
+2.5 Vdc			2.448 Vdc to 2.552 Vdc	

Channel: CH2

Offset Setting	Setting	Measured Value	Limit ^[1]	Pass/Fail
-2.5 Vdc			-2.552 Vdc to -2.448 Vdc	
-1 Vdc	Frequency: 1		-1.037 Vdc to -0.963 Vdc	
-500 mVdc	kHz		-0.532 Vdc to -0.468 Vdc	
0 Vdc	Amplitude: 5 Vpp		-0.027 Vdc to +0.027 Vdc	
+500 mVdc	Impedance:		0.468 Vdc to 0.532 Vdc	
+1 Vdc	50 Ω		0.963 Vdc to 1.037 Vdc	
+2.5 Vdc			2.448 Vdc to 2.552 Vdc	

Note^[1]: the offset limit value is calculated from the offset setting value \pm permissible error. The permissible error is calculated from the specification " \pm (1% of |the setting value| + 2 mVdc + 0.5% of the amplitude (Vpp))".

AC Flatness Test

Channel: CH1

P_{ref}= _____

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/	/Fail
1 MHz				±0.1 dB		
10 MHz	Amplitude: 0			±0.2 dB		
50 MHz	dBm Impedance:			±0.5 dB		
100 MHz ^[2]	50 Ω			±1 dB		
200 MHz ^[3]				±1 dB		

Channel: CH2

P_{ref}= _____

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass	/Fail
1 MHz				±0.1 dB		
10 MHz	Amplitude: 0			±0.2 dB		
50 MHz	dBm Impedance:			±0.5 dB		
100 MHz ^[2]	50 Ω			±1 dB		
200 MHz ^[3]				±1 dB		

 $Note \cite{Lambda} \cite{Lam$

Note^[2]: for DG912 Pro and DG922 Pro only.

Note^[3]: DG922 Pro only.

Harmonic Distortion Test

Channel: CH1

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/Fail
1 MHz		1 (Fundamental Wave):		<-55 dBc	
10 MHz	Waveform: Sine Amplitude: 0 dBm Offset: 0 Vdc	2: 1 (Fundamental Wave): 2:		<-50 dBc	
50 MHz		1 (Fundamental Wave): 2:		<-40 dBc	
200 MHz ^[2]		1 (Fundamental Wave): 2:		<-40 dBc	

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/Fail
1 MHz	Waveform: Sine Amplitude:	1 (Fundamental Wave): 2:		<-55 dBc	
10 MHz	0 dBm Offset: 0 Vdc	1 (Fundamental Wave): 2:		<-50 dBc	

Frequency Setting	Setting	Measured Value	Calculation Result ^[1]	Limit	Pass/Fail
50 MHz		1 (Fundamental Wave): 2:		<-40 dBc	
200 MHz ^[2]		1 (Fundamental Wave): 2:		<-40 dBc	

 $Note^{[1]}$: Calculation Result = Measured Value for the n^{th} Harmonic—Measured Value for the Fundamental Wave

Note^[2]: for DG922 Pro only.

Spurious Signal Test

Channel: CH1

Output Frequency	Start Frequency	Stop Frequency	A	A - 4 dB	Limit	Pass	/Fail
1 MHz	0 Hz	10 MHz			<-65 dBc		
10 MHz	0 Hz	100 MHz			<-60 dBc		
50 MHz	0 Hz	150 MHz			<-50 dBc		
200 MHz ^[1]	0 Hz	500 MHz			<-32 dBc		

Channel: CH2

Output Frequency	Start Frequency	Stop Frequency	A	A - 4 dB	Limit	Pass	/Fail
1 MHz	0 Hz	10 MHz			<-65 dBc		
10 MHz	0 Hz	100 MHz			<-60 dBc		
50 MHz	0 Hz	150 MHz			<-50 dBc		
200 MHz ^[1]	0 Hz	500 MHz			<-32 dBc		

Note^[1]: for DG922 Pro only.

Rise/Fall Time Test

Channel: CH1

Setting	Measured Value		Limit	Pass/ Fail	
Waveform: Square Frequency: 1 MHz	Rise Time		≤3 ns		
Amplitude: 0 dBm Offset: 0 Vdc	Fall Time		≤3 ns		

Channel: CH2

Setting	Measured Value		Limit	Pass Fail	/
Waveform: Square Frequency: 1 MHz	Rise Time		≤3 ns		
Amplitude: 0 dBm Offset: 0 Vdc	Fall Time		≤3 ns		

Overshoot Test

Channel: CH1

Setting	Measured Value	Limit	Pass/ Fail
Waveform: Square			
Frequency: 1 MHz		.E0/	
Amplitude: 0 dBm		<5%	
Offset: 0 Vdc			

Setting	Measured Value	Limit	Pass/ Fail
Waveform: Square			
Frequency: 1 MHz		,E0/	
Amplitude: 0 dBm		<5%	
Offset: 0 Vdc			

HEADQUARTER

RIGOL TECHNOLOGIES CO., LTD. No.8 Keling Road, New District, Suzhou, JiangSu, P.R.China Tel: +86-400620002 Email: info@rigol.com EUROPE

RIGOL TECHNOLOGIES EU GmbH Carl-Benz-Str.11 82205 Gilching Germany Tel: +49(0)8105-27292-0

Email: info-europe@rigol.com

NORTH AMERICA

RIGOL TECHNOLOGIES, USA INC. 10220 SW Nimbus Ave. Suite K-7
Portland, OR 97223
Tel: +1-877-4-RIGOL-1
Fax: +1-877-4-RIGOL-1
Email: info@rigol.com

JAPAN

RIGOL JAPAN CO., LTD. 5F,3-45-6,Minamiotsuka, Toshima-Ku, Tokyo,170-0005,Japan Tel: +81-3-6262-8932 Fax: +81-3-6262-8933 Email: info-japan@rigol.com

RIGOL® is the trademark of **RIGOL** TECHNOLOGIES CO., LTD. Product information in this document is subject to update without notice. For the latest information about **RIGOL**'s products, applications and services, please contact local **RIGOL** channel partners or access **RIGOL** official website: www.rigol.com