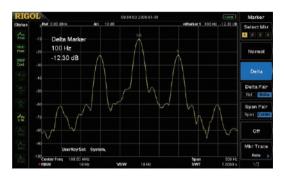


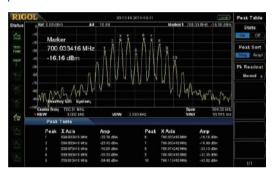
DSA700 Series **Spectrum Analyzer**

- All-Digital IF Technology
- Frequency Range from 100 kHz up to 1 GHz
- Min. -130 dBm Displayed Average Noise Level (Typ.)
- Min. <-80 dBc/Hz @ 10 kHz Offset Phase Noise
- Level Measurement Uncertainty <1.5 dB
- 100 Hz Minimum Resolution Bandwidth
- Advanced Measurement Functions (Opt.)
- EMI Filter & Quasi-Peak Detector Kit (Opt.)
- PC Software (Opt.)
- Optional RF TX/RX Training Kit
- Optional RF Accessories (Cable, Adaptor, Attenuator ...)
- Complete Connectivity: LAN (LXI), USB Host & Device, GPIB (Opt.)
- 8 Inch WVGA (800×480) Display
- Compact Size, Light Weight Design

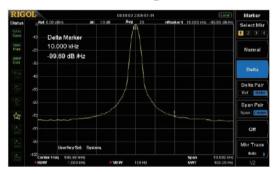
DSA700 Series Spectrum Analyzer

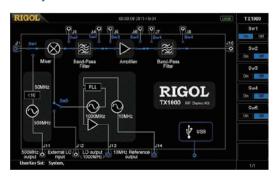

Product Dimensions: Width × Height × Depth = 361.6 mm × 178.8 mm × 128 mm

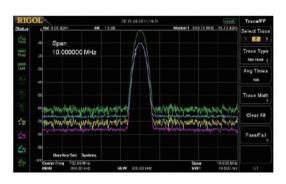
Benefits of Rigol's all digital IF design

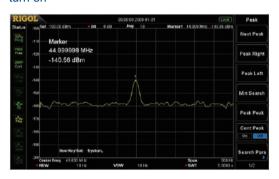

- The ability to measure smaller signals: on the basis of this technology, the IF filter enables smaller bandwidth settings, which greatly reduce the displayed average noise level.
- The ability to distinguish between small signals by frequency: using the IF filter with the smallest bandwidth setting, it is possible to make out signals with a frequency difference of only 100 Hz.
- · High precision amplitude readings: this technology almost eliminates the errors generated by filter switching, reference level uncertainty, scale distortion, as well as errors produced in the process of switching between logarithmic and linear display of amplitude when using a traditional analog IF design.
- · Higher reliability: compared with traditional analog designs, the digital IF greatly reduces the complexity of the hardware, the system instability caused by channel aging, and the temperature sensitivity that can contribute to parts failure.
- · High measurement speed: the use of digital IF technology improves the bandwidth precision and selectivity of the filter, minimizing the scanning time and improving the speed of the measurement.

► Features and Benefits

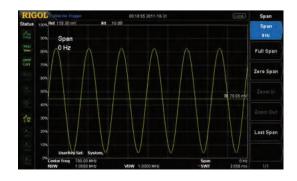

Distinguish the two nearby signals clearly with the 100 Hz RBW

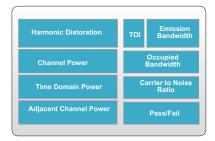

Readout the spectrum peak values with the peak table function


Phase noise < -80 dBc/Hz @10 kHz offset


The GUI to control the RF demo kit (Transmitter) directly

Compare the spectrums with different color trace


Measure lower level signal with the preamplifier turn on


EMI kit (EMI filter & Quasi-peak & Pass/Fail)

Zero span to demodulate the AM signal

► RIGOL Spectrum Analyzer Option and Accessory

Advanced Measurement Kit (AMK-DSA800)

Rack Mount Kit (RM-DSA800)

Near Field Probe (NFP-3)

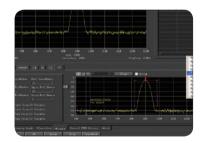
RF Demo Kit (TX1000)

RF Demo Kit (RX1000)

RF CATV Kit

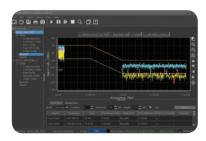
DSA Utility Kit

RF Adaptor Kit


RF Attenuator Kit

RF Cable Kit (CB-NM-NM-75-L-12G) (CB-NM-SMAM-75-L-12G)

High Power Attenuator (ATT03301H)


DSA PC Software (Ultra Spectrum)

Soft Carrying Bag (BAG-G1)

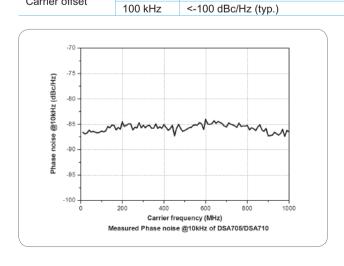
USB to GPIB Converter (USB-GPIB)

EMI Pre-compliance Test Software (S1210 EMI Pre-compliance Software)

Specifications

Specifications are valid under the following conditions: the instrument is within the calibration period, is stored for at least two hours at 0°C to 50°C temperature, and is warmed up for 40 minutes. Unless otherwise noted, the specifications in this manual include the measurement uncertainty.

Typical (typ.): characteristic performance, which 80 percent of the measurement results will meet at room temperature (approximately 25°C). This data is not warranted and does not include the measurement uncertainty.

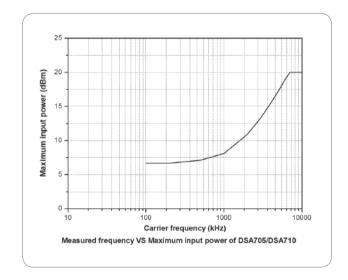

Nominal (nom.): the expected mean or average performance or a designed attribute (such as the 50 Ω connector). This data is not warranted and is measured at room temperature (approximately $25\,^\circ\!\!\mathbb{C}$).

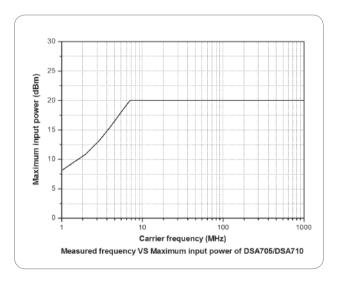
Measured (meas.): an attribute measured during the design phase which can be compared to the expected performance, such as the amplitude drift variation with time. This data is not warranted and is measured at room temperature (approximately 25°C).

NOTE: All charts in this manual are the measurement results of multiple instruments at room temperature unless otherwise noted.

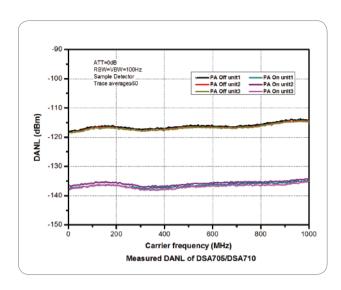
Frequency

Г				
Frequency		DC 4.705	D04740	
_		DSA705	DSA710	
Frequency range		100 kHz to 500 MHz	100 kHz to 1 GHz	
Frequency resolu	tion	1 Hz		
Internal Reference	e Frequency			
		DSA705	DSA710	
Reference freque	ncy	10 MHz		
Accuracy		±[(time since last calibration × aging rate)	+ temperature stability + calibration accuracy]	
Initial calibration a	accuracy	<1 ppm		
Temperature stab	ility	0 $^{\circ}$ C to 50 $^{\circ}$ C , reference to 25 $^{\circ}$ C		
remperature stab	ility	<2 ppm		
Aging rate		<2 ppm/year		
Frequency Reado	out Accuracy			
Marker resolution		span/ (number of sweep points - 1)		
Marker uncertaint	у	±(frequency indication × reference frequency accuracy + 1% × span + 10% × resolution bandwidth + marker resolution)		
Frequency Count	er			
Resolution		1 Hz, 10 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz		
Uncertainty		±(frequency indication × reference frequency accuracy + counter resolution)		
•			·	
Frequency Span				
Range		0 Hz, 100 Hz to maximum frequency of instrument		
Uncertainty		±span/ (number of sweep points - 1)		
		, , , , , , , , , , , , , , , , , , , ,		
SSB Phase Noise	<u> </u>			
222111000110100		DSA705	DSA710	
		20° C to 30° C, $f_c = 500 \text{ MHz}$	20° C to 30° C, f _c = 1 GHz	
	10 kHz	<-80 dBc/Hz	20 0 00 0 0 , 10 1 01 12	
Carrier offset	100 kHz	<-100 dBc/Hz (typ.)		

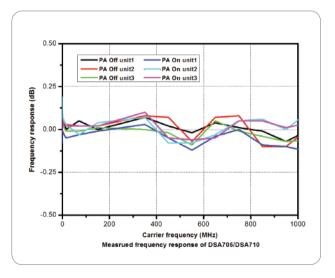

Residual FM		
	20°C to 30°C , RBW = VBW = 1 kHz	
	DSA705	DSA710
Residual FM	<50 Hz (nom.)	


Bandwidths		
	Set "Auto SWT" to "Accy"	
	DSA705	DSA710
Resolution bandwidth (-3 dB)	100 Hz to 1 MHz, in 1-3-10 sequence	
RBW uncertainty	<5% (nom.)	
Resolution filter shape factor (60 dB : 3 dB)	<5 (nom.)	
Video bandwidth (-3 dB)	1 Hz to 3 MHz, in 1-3-10 sequence	
Resolution bandwidth (-6 dB) (EMI-DSA800 option)	200 Hz, 9 kHz, 120 kHz	

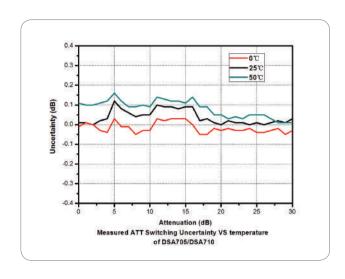
Amplitude


Measurement Range	
Panga	$f_c \ge 10 \text{ MHz}$
Range	DANL to +20 dBm

Maximum Input Level		
DC voltage	50 V	
CW PE power	attenuation = 30 dB	
CW RF power	+20 dBm (100 mW)	
Max. damage level[1]	+30 dBm (1 W)	



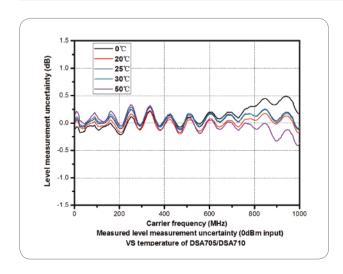
Displayed	Displayed Average Noise Level (DANL)		
		DSA705	DSA710
Frequency		attenuation = 0 dB, RBW = VBW = 100 Hz, sample detector, trace average \geq 50, 20°C to 30°C , input impendence = 50 Ω	
	100 kHz to 1 MHz	<-90 dBm, <-110 dBm (typ.)	<-90 dBm, <-110 dBm (typ.)
PA off	1 MHz to 500 MHz	<-100 dBm, <-110 dBm (typ.)	<-100 dBm, <-110 dBm (typ.)
	500 MHz to 1 GHz		<-100 авін, <-110 авін (typ.)
	100 kHz to 1 MHz	<-110 dBm, <-130 dBm (typ.)	<-110 dBm, <-130 dBm (typ.)
PA on	1 MHz to 500 MHz	<-120 dBm, <-130 dBm (typ.)	<-120 dBm, <-130 dBm (typ.)
	500 MHz to 1 GHz		<-120 dBill, <-130 dBill (tур.)



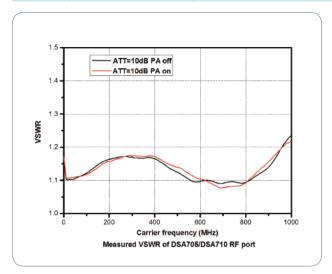
Level Display		
Logarithmic level axis	1 dB to 200 dB	
Linear level axis	0 to reference level	
Number of display points	601	
Number of traces	3 + math trace	
T	normal, positive-peak, negative-peak, sample, RMS, voltage average	
Trace detectors	quasi-peak (with EMI-DSA800 option)	
Trace functions	clear write, max hold, min hold, average, view, blank	
Units of level axis	dBm, dBmV, dBμV, nV, μV, mV, V, nW, μW, mW, W	

Frequency	Frequency Response		
		DSA705	DSA710
Frequency response		$f_c \ge 100$ kHz, attenuation = 10 dB, relative to 50 MHz, 20° C to 30° C	
PA off	100 kHz to 500 MHz	<0.7 dB	<0.7 dB
PA OII	500 MHz to 1 GHz		<0.7 dB
·		f _c ≥ 1MHz, attenuation = 10 dB, relative to 50 MHz	, 20℃ to 30℃
PA on	100 kHz to 500 MHz	<1.0 dB	<1.0 dB
PA OII	500 MHz to 1 GHz		\1.0 UD

Input Attenuation Switching Uncertainty		
DSA705 DSA710		
Setting range	0 dB to 30 dB, in 1 dB step	
Switching uncertainty	f_c = 50 MHz, relative to 10 dB, 20 $^{\circ}$ C to 30 $^{\circ}$ C	
Switching uncertainty	<0.5 dB	


Absolute Amplitude Uncertainty		
DSA705 DSA710		DSA710
Uncertainty	f _c = 50 MHz, peak detector, preamplifier 20 $^{\circ}$ to 30 $^{\circ}$	off, attenuation = 10 dB, input signal level = -10dBm,
	<0.4 dB	

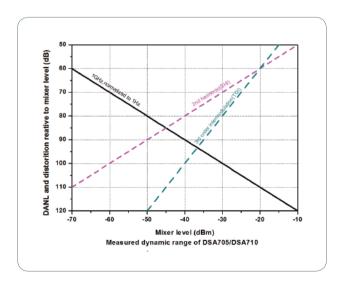
RBW Switching Uncertainty		
Uncertainty	relative to 1 kHz RBW	
Uncertainty	<0.1 dB	


Reference L	Reference Level			
Range		-100 dBm to +20 dBm, in 1 dB step		
Deselution	log scale	0.01 dB		
Resolution	linear scale	4 digits		

Preamplifi	er		
		DSA705 (standard)	DSA710 (standard)
Onin	100 kHz to 500 MHz	20 dB (nom.)	20 dB (nom)
Gain	500 MHz to 1 GHz		20 dB (nom.)

Level Measurement Uncertainty		
	DSA705	DSA710
	95% confidence level, S/N > 20 dB, RBW = VBW = 1 kHz, preamplifier off, attenuation = 10 dB, -50 dBm < input level ≤ 0 dBm, f _c > 10 MHz, 20°C to 30°C	
Level measurement uncertainty	<1.5 dB (nom.)	

RF Input \	/SWR		
		DSA705	DSA710
		attenuation ≥ 10 dB	
VSWR	300 kHz to 500 MHz	<1.5 (nom.)	<1.5 (nom.)
VSVVK	500 MHz to 1 GHz		<1.5 (nom.)



Distortion

Second Harmonic Intercept			
	DSA705	DSA710	
Second harmonic intercept (SHI)	fc ≥ 50 MHz, input signal level = -20 d	Bm, attenuation = 10 dB	
Second narmonic intercept (SHI)	+40 dBm		

Third-order Intercept			
	DSA705	DSA710	
Third order intercent (TOI)	$f_c \ge 50$ MHz, two -20 dBm tones at input mixer spaced by 200 kHz, attenuation = 10 dB		
Third-order intercept (TOI)	+10 dBm		

1dB Gain Compression	
1dB compression of input mixer	$f_c \ge 50$ MHz, attenuation = 0 dB
(P1dB)	>0 dBm

Spurious Response			
	DSA705 DSA710		
Spurious response, inherent	input terminated 50 Ω , attenuation = 0 dB, 20 $^{\circ}$ C to 30 $^{\circ}$ C	input terminated 50 Ω , attenuation = 0 dB, 20 $^{\circ}$ C to 30 $^{\circ}$ C	
	<-88dBm (typ.)	<-88dBm (typ.)	
Intermediate frequency	<-60 dBc	<-60 dBc	
System related sidebands	referenced to local oscillators, referenced to A/D conversion, reference subharmonic of first LO, referenced to harmonic of first LO	ed to	
	<-60 dBc	<-60 dBc	
Input related anurious	mixer level = -30 dBm	mixer level = -30 dBm	
Input related spurious	<-60 dBc		

Sweep

Sweep			
		DSA705	DSA710
Curaon tima	span ≥ 100 Hz	10 ms to 500 s	10 ms to 1000 s
Sweep time	zero span	20 μs to 500 s	20 μs to 1000 s
Curaan tima	span ≥ 100 Hz	5% (nom.)	
Sweep time uncertainty	zero span (sweep time setting value > 1 ms)	5% (nom.)	
Sweep mode		continuous, single	

Trigger

Trigger	
Trigger source	free run, video, external
External trigger level	5 V TTL level

SSC-DSA (Option)

Signal Seamless Capture (SSC)	
Measurement bandwidth	1.5 MHz

Input /Output

Front Panel Connectors		
RF input	impedance	50 Ω (nom.)
Kr Input	connector	N female
Internal/ External Reference		
	frequency	10 MHz
Internal reference	output level	+3 dBm to +10 dBm, +8 dBm (typ.)
internal reference	impedance	50 Ω (nom.)
	connector	BNC female
	frequency	10 MHz ± 5 ppm
External reference	input level	0 dBm to +10 dBm
External reference	impedance	50 Ω (nom.)
	connector	BNC female
External Trigger Input		
External trigger input	impedance	1 kΩ (nom.)
External trigger input	connector	BNC female
Communication Interface		
USB host	connector	A plug
USD 110St	protocol	version2.0
USB device	connector	B plug
USB device	protocol	version2.0
LAN	LXI core 2011 device	10/100Base, RJ-45
IEC/IEEE (GPIB) bus (USB-GPIB option)	IEEE488.2

General Specifications

Calibration Interval

Recommended calibration interval

	TFT LCD	
	800 x 480 pixels	
	8 inch	
	64k	
	DietBridge	
	T ICIDITUGE	
	flash disk (internal), USB storage device	e (not supplied)
	100 V to 240 V (nom.)	
	45 Hz to 440 Hz	
	35 W (typ.), max. 50 W with all options	
'	•	
temperature range	0°C to 50°C	
-	· · · · · · · · · · · · · · · · · · ·	
neight	ир to 0,000т	
n EMC instruction (2014/30		-to-dood
	10 13/EN6 1326-1: 2013 Group 1 Class A	standard
	14011//	in disabansa)
J-4-2:2008/EN 61000-4-2	3 V/m (80 MHz to 1 GHz); 3 V/m (1.4 GHz to 2 GHz); 1 V/m (2.0 GHz	
0-4-3:2002/EN 61000-4-3	to 2.7 GHz)	
		GHz to 2 GHz); 1 V/m (2.0 GHz
0-4-4:2004/EN 61000-4-4	1 kV power lines	, , , , , , , , , , , , , , , , , , ,
0-4-5:2001/EN 61000-4-5	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to	, , , , , , , , , , , , , , , , , , ,
	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz	to PE); 1 kV (neutral to PE)
0-4-5:2001/EN 61000-4-5	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to	to PE); 1 kV (neutral to PE) % UT during 1 cycle; 70% UT
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles	to PE); 1 kV (neutral to PE) % UT during 1 cycle; 70% UT ccles 1010-1:2010,
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles short interruption: 0% UT during 250 cy IEC 61010-1:2010 (Third Edition)/EN 6	to PE); 1 kV (neutral to PE) % UT during 1 cycle; 70% UT ccles 1010-1:2010,
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles short interruption: 0% UT during 250 cy IEC 61010-1:2010 (Third Edition)/EN 6 UL 61010-1:2012 R4.16 and CAN/CSA	to PE); 1 kV (neutral to PE) % UT during 1 cycle; 70% UT ccles 1010-1:2010,
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles short interruption: 0% UT during 250 cy IEC 61010-1:2010 (Third Edition)/EN 6	% UT during 1 cycle; 70% UT
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles short interruption: 0% UT during 250 cy IEC 61010-1:2010 (Third Edition)/EN 6 UL 61010-1:2012 R4.16 and CAN/CSA	% UT during 1 cycle; 70% UT
0-4-5:2001/EN 61000-4-5 0-4-6:2003/EN 61000-4-6 0-4-11:	1 kV power lines 0.5 kV (phase to neutral); 1 kV (phase to 3 V, 0.15-80MHz voltage dip: 0% UT during half cycle; 0 during 25 cycles short interruption: 0% UT during 250 cy IEC 61010-1:2010 (Third Edition)/EN 6 UL 61010-1:2012 R4.16 and CAN/CSA	to PE); 1 kV (neutral to PE) % UT during 1 cycle; 70% UT ccles 1010-1:2010,
c c	h or exceed IEC61326-1: 2 /EN 55011 0-4-2:2008/EN 61000-4-2	45 Hz to 440 Hz 35 W (typ.), max. 50 W with all options temperature range -20 ℃ to 70 ℃ ≪ 95% rel. humidity 0 ℃ 475% rel. humidity up to 3,000m Safety h EMC instruction (2014/30/EU), h or exceed IEC61326-1: 2013/EN61326-1: 2013 Group 1 Class Asize (EN 55011) 0-4-2:2008/EN 61000-4-2 ±4.0 kV (contact discharge), ±8.0 kV (asize (asiz

18 months

Ordering Information

	Description	Order Number
Model	spectrum analyzer, 100 kHz to 500 MHz (with preamplifier)	DSA705
	spectrum analyzer, 100 kHz to 1 GHz (with preamplifier)	DSA710
Standard	quick guide (hard copy)	
accessories	power cable	-
Options	EMI filter & quasi-peak detector	EMI-DSA800
	advanced measurement kit	AMK-DSA800
	DSA PC software	Ultra Spectrum
	signal seamless capture	SSC-DSA
Optional accessories	include: N-SMA cable, BNC-BNC cable, N-BNC adaptor, N-SMA adaptor, 75 Ω to 50 Ω adaptor, 900 MHz/1.8 GHz antenna (2pcs), 2.4 GHz antenna (2pcs)	DSA Utility Kit
	include: N(F)-N(F) adaptor (1pcs), N(M)-N(M) adaptor (1pcs), N(M)-SMA(F) adaptor (2pcs), N(M)-BNC(F) adaptor (2pcs), SMA(F)-SMA(F) adaptor (1pcs), SMA(M)-SMA(M) adaptor (1pcs), BNC T type adaptor (1pcs), 50 Ω SMA load (1pcs), 50 Ω BNC impedance adaptor (1pcs)	RF Adaptor Kit
	include: 50 Ω to 75 Ω adaptor (2pcs)	RF CATV Kit
	include: 6dB attenuator (1pcs), 10dB attenuator (2pcs)	RF Attenuator Kit
	30dB high power attenuator, max. power 100W	ATT03301H
	N(M)-N(M) RF cable	CB-NM-NM-75-L-12G
	N(M)-SMA(M) RF cable	CB-NM-SMAM-75-L-120
	RF demo kit (transmitter)	TX1000
	RF demo kit (receiver)	RX1000
	near field probe	NFP-3
	EMI pre-compliance test software	S1210 EMI Pre- compliance Software
	rack mount kit	RM-DSA800
	soft carrying bag	BAG-G1
	USB cable	CB-USBA-USBB-FF-150
	USB to GPIB interface converter for instrument	USB-GPIB

HEADQUARTER

RIGOL TECHNOLOGIES, INC. No.156,Cai He Village, Sha He Town, Chang Ping District, Beijing, 102206 P.R.China Tel:+86-10-80720067 Electronic Measurement Instrument service and support email:EMD_support@rigol.com

EUROPE

RIGOL TECHNOLOGIES EU GmbH Lindbergh str. 4 82178 Puchheim Germany Tel: 0049- 89/89418950 Email: info-europe@rigol.com

NORTH AMERICA

RIGOL TECHNOLOGIES, USA INC. 8140 SW Nimbus Ave. Beaverton, OR 97008 Tel: 877-4-RIGOL-1 Email: info@rigol.com

JAPAN

RIGOL TECHNOLOGIES JAPAN, LLC MJ BLDG.3F,1-7-4 MINATO, CHUOU-KU, TOKYO, JAPAN 〒104-0043 Tel: 03-6262-8932 Fax: 03-6262-8933 Email: info-japan@rigol.com

INDONESIA

PT. Unitronic Jaya
Jl. Batununggal Indah IV No. 75
Bandung 40266
Jawa Barat, Indonesia
Tel: +62 - 22 - 7514564
Fax: +62 - 22 - 7538688
Email: sales@unitronicjaya.com
Web: www.unitronicjaya.com

RIGOL® is the registered trademark of **RIGOL** Technologies, Inc. Product information in this document subject to update without notice. For the latest information about **RIGOL**'s products, applications and services, please contact local **RIGOL** office or access **RIGOL** official website: www.rigol.com